$A,B是三阶矩阵. 证明:\det \left( AB-BA \right) =\frac{1}{3}\mathrm{tr}\left[ \left( AB-BA \right) ^3 \right] . $
Tips Answer$$ 记M=AB-BA. f\left( \lambda \right) =\left| \lambda I-M \right|=\lambda ^3-\mathrm{tr}\left( M \right) \lambda ^2+?\lambda -\det \left( M \right) \\ 因为tr\left( M \right) =0,且f\left( M \right) =0,从而有: \\ M^3=?M+\det \left( M \right) I \\ 两边同时取tr得到:tr\left( M^3 \right) =?\cdot 0+3\det \left( M \right) \\ 也即\det \left( M \right) =\frac{1}{3}\mathrm{tr}\left( M^3 \right) $$