$ { 求极限:\lim_{x\rightarrow 0} \frac{\cos \left( \tan x \right) -\cos x}{x^3\sin x}.} $
Tips Answer$$ 解:由拉格朗日中值定理可得:\cos \left( \tan x \right) -\cos x=-\sin \xi \cdot \left( \tan x-x \right) ; \\ 其中\xi \in \left( x,\tan x \right) ,当x\rightarrow 0时,\xi \rightarrow 0. \\ 即:\lim_{x\rightarrow 0} \frac{\cos \left( \tan x \right) -\cos x}{x^3\sin x}=\lim_{x\rightarrow 0} \frac{-\sin \xi \cdot \left( \tan x-x \right)}{x^4}=\lim_{x\rightarrow 0} \frac{-\xi \cdot \frac{1}{3}x^3}{x^4}=-\frac{1}{3}\lim_{x\rightarrow 0} \frac{\xi}{x}; \\ 由于\xi \in \left( x,\tan x \right) \Longrightarrow 1=\frac{x}{x}<\frac{\xi}{x}<\frac{\tan x}{x}\Longrightarrow \lim_{x\rightarrow 0} \frac{\tan x}{x}=\lim_{x\rightarrow 0} \frac{x}{x}=1; \\ 由夹逼准则可得:-\frac{1}{3}\lim_{x\rightarrow 0} \frac{\xi}{x}=-\frac{1}{3}\cdot 1=-\frac{1}{3}; \\ 因此:\lim_{x\rightarrow 0} \frac{\cos \left( \tan x \right) -\cos x}{x^3\sin x}=-\frac{1}{3}. $$